


1210K.TV

Pendelkugellager, zweireihig, kegelige Bohrung, Kegel 1:12, Polyamidkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Abmessungen

d	(mm)	50	Bohrungsdurchmesser
D	(mm)	90	Außendurchmesser
В	(mm)	20	Breite
r _{s min}	(mm)	1.1	minimaler Kantenabstand
н	(mm)	77.4	Borddurchmesser Außenring
J	(mm)	62.7	Borddurchmesser Innenring

Anschlussmaße

d _{a min}	(mm)	57	minimaler Durchmesser der Wellenschulter
D _{a max}	(mm)	83	maximaler Durchmesser der Gehäuseschulter
r _{a max}	(mm)	1	maximaler Rundungsradius

Leistungsdaten

\mathbf{C}_{r}	(kN)	23.1	dynamische Tragzahl, radial
\mathbf{C}_{or}	(kN)	8.12	statische Tragzahl, radial
\mathbf{C}_{ur}	(kN)	0.516	Ermüdungsgrenzbelastung, radial
n _G	(min ⁻¹)	8500	Grenzdrehzahl
n _B	(min ⁻¹)	7700	Bezugsdrehzahl

Gewicht

|--|

1210K.TV

Pendelkugellager, zweireihig, kegelige Bohrung, Kegel 1:12, Polyamidkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Berechnungsfaktoren

e	0.2	Grenzwert für F _a / F _r
Y ₁	3.2	dynamischer Axiallastfaktor für $F_a / F_r \le e$
Y ₂	4.9	dynamischer Axiallastfaktorfür $F_a / F_r > e$
Y ₀	3.3	statischer Axiallastfaktor