


1309K.TV

Pendelkugellager, zweireihig, kegelige Bohrung, Kegel 1:12, Polyamidkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Abmessungen

d	(mm)	45	Bohrungsdurchmesser
D	(mm)	100	Außendurchmesser
В	(mm)	25	Breite
r _{s min}	(mm)	1.5	minimaler Kantenabstand
Н	(mm)	83.9	Borddurchmesser Außenring
J	(mm)	64	Borddurchmesser Innenring

Anschlussmaße

d _{a min}	(mm)	54	minimaler Durchmesser der Wellenschulter
D _{a max}	(mm)	91	maximaler Durchmesser der Gehäuseschulter
r _{a max}	(mm)	1.5	maximaler Rundungsradius

Leistungsdaten

\mathbf{C}_{r}	(kN)	38.9	dynamische Tragzahl, radial
\mathbf{C}_{or}	(kN)	12.7	statische Tragzahl, radial
C _{ur}	(kN)	0.807	Ermüdungsgrenzbelastung, radial
n _G	(min ⁻¹)	7500	Grenzdrehzahl
n _B	(min ⁻¹)	6700	Bezugsdrehzahl

Gewicht

|--|

1309K.TV

Pendelkugellager, zweireihig, kegelige Bohrung, Kegel 1:12, Polyamidkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Berechnungsfaktoren

e	0.25	Grenzwert für F _a / F _r
Y ₁	2.5	dynamischer Axiallastfaktor für $F_a / F_r \le e$
Y ₂	3.9	dynamischer Axiallastfaktorfür $F_a / F_r > e$
Y ₀	2.6	statischer Axiallastfaktor