


22238MB.W33

Pendelrollenlager, kegelige Bohrung, zweireihig, Umfangsnut mit drei Schmierbohrungen am Außenring, Messingkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Abmessungen

d	(mm)	190	Bohrungsdurchmesser
D	(mm)	340	Außendurchmesser
В	(mm)	92	Breite
r _{s min}	(mm)	4	minimaler Kantenabstand
Н	(mm)	294	Borddurchmesser Außenring
J	(mm)	237	Borddurchmesser Innenring

Anschlussmaße

d _{a min}	(mm)	207	minimaler Durchmesser der Wellenschulter
D _{a max}	(mm)	323	maximaler Durchmesser der Gehäuseschulter
r _{a max}	(mm)	3	maximaler Rundungsradius

Leistungsdaten

C _r	(kN)	1110	dynamische Tragzahl, radial
C_{or}	(kN)	1700	statische Tragzahl, radial
C_{ur}	(kN)	133	Ermüdungsgrenzbelastung, radial
\mathbf{n}_{G}	(min ⁻¹)	2300	Grenzdrehzahl
n _B	(min ⁻¹)	1600	Bezugsdrehzahl

Gewicht

|--|

22238MB.W33

Pendelrollenlager, kegelige Bohrung, zweireihig, Umfangsnut mit drei Schmierbohrungen am Außenring, Messingkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Berechnungsfaktoren

e	0.26	Grenzwert für F _a / F _r
Y ₁	2.5	dynamischer Axiallastfaktor für $F_a / F_r \le e$
Y ₂	3.8	dynamischer Axiallastfaktorfür $F_a / F_r > e$
Y ₀	2.5	statischer Axiallastfaktor