


22334K.MB.W33

Pendelrollenlager, kegelige Bohrung, Kegel 1:12,zweireihig, Umfangsnut mit drei Schmierbohrungen am Außenring, Messingkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Abmessungen

d	(mm)	170	Bohrungsdurchmesser
D	(mm)	360	Außendurchmesser
В	(mm)	120	Breite
r _{s min}	(mm)	4	minimaler Kantenabstand
н	(mm)	300	Borddurchmesser Außenring
J	(mm)	228	Borddurchmesser Innenring

Anschlussmaße

$\mathbf{d}_{a\;min}$	(mm)	187	minimaler Durchmesser der Wellenschulter
D _{a max}	(mm)	343	maximaler Durchmesser der Gehäuseschulter
r _{a max}	(mm)	3	maximaler Rundungsradius

Leistungsdaten

C _r	(kN)	1550	dynamische Tragzahl, radial
C _{or}	(kN)	2150	statische Tragzahl, radial
\mathbf{C}_{ur}	(kN)	174	Ermüdungsgrenzbelastung, radial
n _G	(min ⁻¹)	2000	Grenzdrehzahl
n _B	(min ⁻¹)	1300	Bezugsdrehzahl

Gewicht

|--|

22334K.MB.W33

Pendelrollenlager, kegelige Bohrung, Kegel 1:12,zweireihig, Umfangsnut mit drei Schmierbohrungen am Außenring, Messingkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Berechnungsfaktoren

e	0.34	Grenzwert für F _a / F _r
Y ₁	2	dynamischer Axiallastfaktor für $F_a / F_r \le e$
Y ₂	2.9	dynamischer Axiallastfaktorfür $F_a / F_r > e$
\mathbf{Y}_{0}	1.9	statischer Axiallastfaktor