


22340K.MB.W33

Pendelrollenlager, kegelige Bohrung, Kegel 1:12,zweireihig, Umfangsnut mit drei Schmierbohrungen am Außenring, Messingkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Abmessungen

d	(mm)	200	Bohrungsdurchmesser
D	(mm)	420	Außendurchmesser
В	(mm)	138	Breite
r _{s min}	(mm)	5	minimaler Kantenabstand
н	(mm)	351	Borddurchmesser Außenring
J	(mm)	267	Borddurchmesser Innenring

Anschlussmaße

d _{a min}	(mm)	220	minimaler Durchmesser der Wellenschulter
D _{a max}	(mm)	400	maximaler Durchmesser der Gehäuseschulter
r _{a max}	(mm)	4	maximaler Rundungsradius

Leistungsdaten

C _r	(kN)	2020	dynamische Tragzahl, radial
C_{or}	(kN)	2920	statische Tragzahl, radial
C_{ur}	(kN)	226	Ermüdungsgrenzbelastung, radial
\mathbf{n}_{G}	(min ⁻¹)	1600	Grenzdrehzahl
n _B	(min ⁻¹)	1100	Bezugsdrehzahl

Gewicht

|--|

22340K.MB.W33

Pendelrollenlager, kegelige Bohrung, Kegel 1:12,zweireihig, Umfangsnut mit drei Schmierbohrungen am Außenring, Messingkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Berechnungsfaktoren

e	0.34	Grenzwert für F _a / F _r
Y ₁	2	dynamischer Axiallastfaktor für $F_a / F_r \leq e$
Y ₂	2.9	dynamischer Axiallastfaktorfür $F_a / F_r > e$
Y ₀	1.9	statischer Axiallastfaktor