


24124K30.MB.W33

Pendelrollenlager, kegelige Bohrung, Kegel 1:30, zweireihig, Umfangsnut mit drei Schmierbohrungen am Außenring, Messingkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Abmessungen

d	(mm)	120	Bohrungsdurchmesser
D	(mm)	200	Außendurchmesser
В	(mm)	80	Breite
r _{s min}	(mm)	2	minimaler Kantenabstand
н	(mm)	168	Borddurchmesser Außenring
J	(mm)	142	Borddurchmesser Innenring

Anschlussmaße

d _{a min}	(mm)	131	minimaler Durchmesser der Wellenschulter
D _{a max}	(mm)	189	maximaler Durchmesser der Gehäuseschulter
r _{a max}	(mm)	2	maximaler Rundungsradius

Leistungsdaten

\mathbf{C}_{r}	(kN)	580	dynamische Tragzahl, radial
\mathbf{C}_{or}	(kN)	960	statische Tragzahl, radial
\mathbf{C}_{ur}	(kN)	87.1	Ermüdungsgrenzbelastung, radial
n _G	(min ⁻¹)	3000	Grenzdrehzahl
n _B	(min ⁻¹)	1700	Bezugsdrehzahl

Gewicht

|--|

24124K30.MB.W33

Pendelrollenlager, kegelige Bohrung, Kegel 1:30, zweireihig, Umfangsnut mit drei Schmierbohrungen am Außenring, Messingkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Berechnungsfaktoren

e	0.38	Grenzwert für F _a / F _r
Y ₁	1.7	dynamischer Axiallastfaktor für $F_a / F_r \leq e$
\mathbf{Y}_2	2.6	dynamischer Axiallastfaktorfür $F_a / F_r > e$
Y ₀	1.7	statischer Axiallastfaktor