

30304

Kegelrollenlager, einreihig, zerlegbar,angestellt oder paarweise,Stahblechkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Abmessungen

d	(mm)	20	Bohrungsdurchmesser
D	(mm)	52	Außendurchmesser
В	(mm)	15	Breite Innenring
С	(mm)	13	Breite Außenring
Т	(mm)	16	Gesamtbreite
r _{s min}	(mm)	1.5	minimaler Kantenabstand
r _{1s min}	(mm)	1.5	minimaler Kantenabstand
а	(mm)	11	Stützweite
d_1	(mm)	36	Borddurchmesser Innenring

Leistungsdaten

\mathbf{C}_{r}	(kN)	33.8	dynamische Tragzahl, radial
\mathbf{C}_{or}	(kN)	32.3	statische Tragzahl, radial
\mathbf{C}_{ur}	(kN)	3.55	Ermüdungsgrenzbelastung, radial
n _G	(min ⁻¹)	15000	Grenzdrehzahl
n _B	(min ⁻¹)	10000	Bezugsdrehzahl

Gewicht

0.19 Gewich

30304

Kegelrollenlager, einreihig, zerlegbar,angestellt oder paarweise,Stahblechkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

	Δn	isch	lussm	aße
--	----	------	-------	-----

d _{a max}	(mm)	28	maximaler Durchmesser der Wellenschulter
$\mathbf{d}_{b\;min}$	(mm)	27	minimaler Durchmesser der Wellenschulter
D _{a min}	(mm)	44	minimaler Durchmesser der Gehäuseschulter
D _{a max}	(mm)	45	maximaler Durchmesser der Gehäuseschulter
D _{b min}	(mm)	47	minimaler Durchmesser der Gehäuseschulter
C _{a min}	(mm)	2	minimaler axialer Freiraum
C _{b min}	(mm)	3	minimaler axialer Freiraum
r _{a max}	(mm)	1.5	maximaler Rundungsradius
r _{b max}	(mm)	1.5	maximaler Rundungsradius

Berechnungsfaktoren

е	0.3	Grenzwert für F _a / F _r
Y	2	dynamischer Axiallastfaktorfür F_a / F_r > e
\mathbf{Y}_{0}	1.1	statischer Axiallastfaktor