

32016

Kegelrollenlager, einreihig, zerlegbar,angestellt oder paarweise,Stahblechkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Abmessungen

d	(mm)	80	Bohrungsdurchmesser
D	(mm)	125	Außendurchmesser
В	(mm)	29	Breite Innenring
С	(mm)	22	Breite Außenring
Т	(mm)	29	Gesamtbreite
r _{s min}	(mm)	1.5	minimaler Kantenabstand
r _{1s min}	(mm)	1.5	minimaler Kantenabstand
а	(mm)	27	Stützweite
$d_{\scriptscriptstyle 1}$	(mm)	104	Borddurchmesser Innenring

Leistungsdaten

\mathbf{C}_{r}	(kN)	133	dynamische Tragzahl, radial	
\mathbf{C}_{or}	(kN)	209	statische Tragzahl, radial	
\mathbf{C}_{ur}	(kN)	25.6	Ermüdungsgrenzbelastung, radial	
n _G	(min ⁻¹)	5000	Grenzdrehzahl	
n _B	(min ⁻¹)	3500	Bezugsdrehzahl	

Gewicht

|--|

32016

Kegelrollenlager, einreihig, zerlegbar,angestellt oder paarweise,Stahblechkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Λ	n	6	_	h	ь		_	_	m	١.	R	e
\boldsymbol{H}	п	5	ĸ.,	п		J I	3	~	•	lc	9 113	

d _{a max}	(mm)	89	maximaler Durchmesser der Wellenschulter
$\mathbf{d}_{b\;min}$	(mm)	87	minimaler Durchmesser der Wellenschulter
D _{a min}	(mm)	112	minimaler Durchmesser der Gehäuseschulter
D _{a max}	(mm)	117	maximaler Durchmesser der Gehäuseschulter
D _{b min}	(mm)	120	minimaler Durchmesser der Gehäuseschulter
C _{a min}	(mm)	6	minimaler axialer Freiraum
C _{b min}	(mm)	7	minimaler axialer Freiraum
r _{a max}	(mm)	1.5	maximaler Rundungsradius
r _{b max}	(mm)	1.5	maximaler Rundungsradius

Berechnungsfaktoren

e	0.42	Grenzwert für F _a / F _r
Y	1.4	dynamischer Axiallastfaktorfür $F_a / F_r > e$
Y ₀	0.8	statischer Axiallastfaktor