

32310

Kegelrollenlager, einreihig, zerlegbar,angestellt oder paarweise,Stahblechkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Abmessungen

d	(mm)	50	Bohrungsdurchmesser
D	(mm)	110	Außendurchmesser
В	(mm)	40	Breite Innenring
С	(mm)	33	Breite Außenring
т	(mm)	42	Gesamtbreite
r _{s min}	(mm)	2.5	minimaler Kantenabstand
r _{1s min}	(mm)	2	minimaler Kantenabstand
а	(mm)	29	Stützweite
d_1	(mm)	78	Borddurchmesser Innenring

Leistungsdaten

\mathbf{C}_{r}	(kN)	181	dynamische Tragzahl, radial
C _{or}	(kN)	233	statische Tragzahl, radial
C _{ur}	(kN)	29.1	Ermüdungsgrenzbelastung, radial
n _G	(min ⁻¹)	6200	Grenzdrehzahl
n _B	(min ⁻¹)	4500	Bezugsdrehzahl

Gewicht

1.88 Gewicht

32310

Kegelrollenlager, einreihig, zerlegbar,angestellt oder paarweise,Stahblechkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Ansc	hluss	maße
Allst	IIIUSS	mane

d _{a max}	(mm)	62	maximaler Durchmesser der Wellenschulter
$\mathbf{d}_{b\;min}$	(mm)	60	minimaler Durchmesser der Wellenschulter
D _{a min}	(mm)	90	minimaler Durchmesser der Gehäuseschulter
D _{a max}	(mm)	100	maximaler Durchmesser der Gehäuseschulter
D _{b min}	(mm)	102	minimaler Durchmesser der Gehäuseschulter
C _{a min}	(mm)	5	minimaler axialer Freiraum
C _{b min}	(mm)	9	minimaler axialer Freiraum
r _{a max}	(mm)	2.5	maximaler Rundungsradius
r _{b max}	(mm)	2	maximaler Rundungsradius

Berechnungsfaktoren

е	0.35	Grenzwert für F _a / F _r
Y	1.7	dynamischer Axiallastfaktorfür $F_a / F_r > e$
Y ₀	1	statischer Axiallastfaktor