


1304TV

Pendelkugellager, zweireihig, Polyamidkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Abmessungen

d	(mm)	20	Bohrungsdurchmesser
D	(mm)	52	Außendurchmesser
В	(mm)	15	Breite
r _{s min}	(mm)	1.1	minimaler Kantenabstand
н	(mm)	41.7	Borddurchmesser Außenring
J	(mm)	31.5	Borddurchmesser Innenring

Anschlussmaße

d _{a min}	(mm)	27	minimaler Durchmesser der Wellenschulter
D _{a max}	(mm)	45	maximaler Durchmesser der Gehäuseschulter
r _{a max}	(mm)	1	maximaler Rundungsradius

Leistungsdaten

C _r	(kN)	12.8	dynamische Tragzahl, radial
C_{or}	(kN)	3.33	statische Tragzahl, radial
C_{ur}	(kN)	0.211	Ermüdungsgrenzbelastung, radial
\mathbf{n}_{G}	(min ⁻¹)	16000	Grenzdrehzahl
n _B	(min ⁻¹)	12000	Bezugsdrehzahl

Gewicht

0.164 Gewicht

1304TV

Pendelkugellager, zweireihig, Polyamidkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Berechnungsfaktoren

е	0.29	Grenzwert für F _a / F _r
Y ₁	2.17	dynamischer Axiallastfaktor für $F_a / F_r \le e$
Y ₂	3.35	dynamischer Axiallastfaktorfür $F_a / F_r > e$
Y ₀	2.27	statischer Axiallastfaktor