


1305TV

Pendelkugellager, zweireihig, Polyamidkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Abmessungen

d	(mm)	25	Bohrungsdurchmesser
D	(mm)	62	Außendurchmesser
В	(mm)	17	Breite
r _{s min}	(mm)	1.1	minimaler Kantenabstand
н	(mm)	50.9	Borddurchmesser Außenring
J	(mm)	37.8	Borddurchmesser Innenring

Anschlussmaße

d _{a n}	nin (mm)	32	minimaler Durchmesser der Wellenschulter
D _a ,	max (mm)	55	maximaler Durchmesser der Gehäuseschulter
r _{a m}	aax (mm)	1	maximaler Rundungsradius

Leistungsdaten

\mathbf{C}_{r}	(kN)	18.6	dynamische Tragzahl, radial
C _{or}	(kN)	5.01	statische Tragzahl, radial
C _{ur}	(kN)	0.318	Ermüdungsgrenzbelastung, radial
n _G	(min ⁻¹)	13000	Grenzdrehzahl
n _B	(min ⁻¹)	10000	Bezugsdrehzahl

Gewicht

|--|

1305TV

Pendelkugellager, zweireihig, Polyamidkäfig, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Berechnungsfaktoren

е	0.28	Grenzwert für F _a / F _r
Y ₁	2.29	dynamischer Axiallastfaktor für $F_a / F_r \leq e$
Y ₂	3.54	dynamischer Axiallastfaktorfür $F_a / F_r > e$
Y ₀	2.4	statischer Axiallastfaktor