


2213.2RS.TV

Pendelkugellager, zweireihig, befettet, Polyamidkäfig, zwei Dichtscheiben, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Abmessungen

d	(mm)	65	Bohrungsdurchmesser
D	(mm)	120	Außendurchmesser
В	(mm)	31	Breite
r _{s min}	(mm)	1.5	minimaler Kantenabstand
H ₁	(mm)	107.7	Borddurchmesser Außenring
J	(mm)	85.2	Borddurchmesser Innenring

Anschlussmaße

d _{a min}	(mm)	74	minimaler Durchmesser der Wellenschulter
D _{a max}	(mm)	111	maximaler Durchmesser der Gehäuseschulter
r _{a max}	(mm)	1.5	maximaler Rundungsradius

Leistungsdaten

C _r	(kN)	31.4	dynamische Tragzahl, radial
\mathbf{C}_{or}	(kN)	12.5	statische Tragzahl, radial
C_{ur}	(kN)	0.794	Ermüdungsgrenzbelastung, radial
\mathbf{n}_{G}	(min ⁻¹)	3200	Grenzdrehzahl

Gewicht

ewicht

2213.2RS.TV

Pendelkugellager, zweireihig, befettet, Polyamidkäfig, zwei Dichtscheiben, Ringe und Wälzkörper aus Qualitätswälzlagerstahl

Berechnungsfaktoren

e	0.18	Grenzwert für F _a / F _r
Y ₁	3.6	dynamischer Axiallastfaktor für $F_a / F_r \leq e$
\mathbf{Y}_{2}	5.5	dynamischer Axiallastfaktorfür $F_a / F_r > e$
Y ₀	3.7	statischer Axiallastfaktor